Mapping sealed surfaces for Brussels and surroundings using high and medium resolution satellite data
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Abstract

Sealed surfaces prevent water from infiltrating the soil and have a negative impact on environmental conditions. Mapping and monitoring the extent of sealed surfaces has therefore become important in many applications. A promising technique to obtain information about the distribution of sealed surfaces is to extract its occurrence directly from remotely sensed data and, more in particular, from satellite imagery. To exploit the advantages of both medium and high resolution data the use of sub-pixel classification is a good option. In this study artificial neural networks were used for sub-pixel classification of a Landsat ETM+ image for Brussels and surroundings. Training the networks was accomplished by extracting detailed information about land cover from a classified Ikonos image covering part of the Landsat data. Classification of the Ikonos image resulted in a kappa-index of 0.91. The kappa value was improved to almost 0.95 through post classification.  Based on a random sample of Landsat pixels with known proportions for four major land-cover classes –sealed, vegetation, water, bare soil–, neural networks for sub-pixel classification were trained and validated. The average difference between real and estimated proportions of sealed surfaces for a Landsat pixel is about 9%.

1 Introduction

The urban population is expected to grow from 2.86 billion in 2000 to 4.98 billion in 2030. By then, almost 60% of world population will be living in cities (UN-HABITAT, 2004). Throughout the world rural areas are being urbanised (Seto and Liu, 2003). This evolution leads to an increase in sealed land cover types (Jensen and Cowen, 1999). Sealed surfaces refer to every man-made material that keeps water from infiltrating into the soil (Sleavin et al, 2000). The occurrence of this land cover type increases runoff, which collects pollution and therefore degrades the natural environment (Schueler, 1994; Bird et al, 2000). Because of sealed surfaces, the urban environment is warmer than the vegetation it replaces (Slonecker et al, 2001). For monitoring these negative implications, the mapping of sealed surfaces is important. Furthermore sealed surfaces are a reliable indicator for the urbanisation process and its dynamics (Civco et al, 2002; Yang et al, 2003).
For mapping the distribution of sealed surfaces, satellite images are an appropriate information source. Compared with aerial photographs, high resolution satellite images like Ikonos and Quickbird have about the same spatial resolution. Yet, they also have a larger extent and include multispectral information. For this, satellite images with high resolution are considered as the best option for accurate mapping of sealed surfaces in an urban environment (Thomas et al, 2003). Medium resolution satellite images, on the other hand, require less memory space, are cheaper and cover even larger areas (Wang and Zhang, 2004). To exploit the advantages of both types of imagery, high resolution data can be used to obtain information on the sub-pixel level from medium resolution satellite images. Different methods for sub-pixel estimation have been applied, including decision trees (Yang et al, 2003), spectral unmixing (Ji and Jensen, 1999) and neural networks (Civco and Hurd, 1997). Artificial neural networks (ANN) are a very promising technique. In this study ANNs are used to model the relationship between the spectral values of a Landsat pixel and the proportion of sealed surfaces within that pixel. Reference proportions for training the ANNs are obtained from a high resolution classification of an overlapping Ikonos image. 
2 Data and study area

For this research, two satellite images were used: a medium resolution Landat image and a high resolution Ikonos image. The study area corresponds to an Ikonos image from Brussels, taken on June 8, 2000. Brussels, the capital of Belgium and the EU, is centrally located in Belgium with an area of 161.78 km² and a registered population of 995 571 in 2003 (Parliament of the Brussels Capital Region, 2004). The Ikonos image comprises the city centre with its pentagon shaped peripheral avenue in the northwest, residential, industrial and rural areas outward from the centre, the national airport in the north-east and the Sonian forest in the southeast. The image was orthorectified using a digital surface model and resampled to a resolution of 1 meter.
The Landsat image acquired on October 18, 1999 was co-registered with the Ikonos image using a first order transformation. The obtained RMSE was 5.8 meters or about one fifth of the resolution of a multispectral Landsat pixel. After resampling, each Landsat pixel contains exactly 900 Ikonos pixels. Besides these two satellite images, we also used aerial photographs with a resolution of 10cm obtained from the Brussels Regional Informatics Centre.
3 Methods

3.1 Classification of the Ikonos image

To train a sub-pixel estimation model, proportions of sealed surfaces for a selection of Landsat pixels (training pixels) are needed. This information was obtained by classifying the Ikonos image. Ten land cover classes and a shadow class were distinguished (table 1). Although shadows occur on different land cover types, they form a spectral cluster (Bianchin and Bravin, 2003). To prevent shadow pixels from being misclassified, it is better to group them in a separate class (Yoon et al, 2002). Within the sealed surfaces class a distinction was made between red and grey surfaces. To limit spectral heterogeneity within these classes, they were split into two and three spectrally more uniform classes, respectively. For each class 200 training pixels were selected. The number of validation pixels (table 1) was kept in proportion to the occurrence of each class in the image.

	Class nr
	Class label
	Training pixels
	Validation pixels
	Colour

	1
	light red
	200
	22
	light red

	2
	dark red
	200
	70
	dark red

	3
	bare soil
	200
	154
	brown

	4
	water
	200
	60
	blue

	5
	grass
	200
	298
	light green

	6
	crops
	200
	278
	yellow

	7
	trees
	200
	369
	dark green

	8
	light grey
	200
	130
	light grey

	9
	grey
	200
	373
	grey

	10
	dark grey
	200
	324
	dark grey

	11
	shadow
	200
	165
	black


Table 1: The 11 classes that were distinguished in the Ikonos classification with number of training pixels, number of validation pixels and colour used for representing the class
An ANN was applied for classifying the Ikonos image. ANNs are often used because of their better performance for classifying land cover in comparison with more traditional statistical classification methods (Seto and Liu, 2003; Cetin et al, 2004). An ANN consists of an input and output layer and one or more hidden layers, each containing a set of nodes that are connected. The nodes in the input layer are fed with the multispectral values (or transformations of these values) of the satellite image or with other input data. The output of each node is passed on through the network to the nodes in the subsequent layer. Every connection has its own weight factor. Each node transforms its weighted input into an output value by applying a user-defined activation function. The number of nodes in the output layer corresponds to the number of classes. The activation value of each output node gives an indication of the possibility that the pixel belongs to the class the node represents. The pixel is then allocated to the class with the highest activation value.

As mentioned above, to prevent shadow pixels from being misclassified, often as water (Sugumaran et al, 2002), they were assigned to a separate class. To reveal the underlying land cover, pixels classified as shadow in the initial classification were reclassified by a new ANN to assign them to a land cover class. As input the activation values that occurred as output from the initial ANN were used. The output for training and validation was obtained by visual interpretation of the underlying land cover using high resolution aerial photographs. This method outperformed assigning shadow pixels to the class corresponding to the second highest activation value (Van de Voorde et al, accepted).
Because of differences in slope, materials, incidence angle, the occurrence of mixed pixels, etc. the range of spectral responses for urban surface types is quite large. Per-pixel classifications therefore often result in highly fragmented images containing single pixels that are assigned to another, mostly wrong, class in comparison with the surrounding pixels that belong to the same object. To correct for this well known pepper-and-salt effect and for some other obvious misclassifications, rule-based post classification (Van de Voorde et al, accepted) was applied. 
3.2 Sub-pixel classification of the Landsat ETM+ image

Medium resolution satellite images are cheaper and cover a larger area than high resolution imagery. The more limited spatial resolution though results in the occurrence of different land cover types within one pixel. To tackle the mixed pixel problem, different sub-pixel techniques for estimating within-pixel proportions are available. In this study an ANN was used to link the spectral values of a Landsat pixel with the proportion of each class within that pixel. The input consisted of the ratios between the different spectral bands of the Landsat image. For training and validating the ANN, reference proportions were obtained by counting for each Landsat pixel the number of constituent Ikonos pixels in each class. 
In this set of training and validation data, land cover needs to correspond in both images. Pixels for which the land cover type has changed between the two acquisition dates need to be removed. Because land cover changes mostly occur between vegetation and non-vegetation, all data for which the NDVI of the Landsat pixel was not comparable with the average NDVI of the constituent Ikonos pixels was removed from the training and validation set.
The Mean Absolute Error (MAE) was used to assess the performance of the sub-pixel estimation (Canters et al, 2001; Foody and Arora, 1996). First the difference between true and estimated (est) proportions of a class k was calculated for each pixel:
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From these Absolute Errors the MAE for class k was calculated by taking the average for all pixels in the validation set m:
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The sum of the class specific MAEs gives an indication of the overall performance of the model:
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4 Results

4.1 Classification of the Ikonos image

For classifying the Ikonos image an ANN was used. The overall accuracy of the classification was 92% and the kappa almost 0.91. Producer’s and user’s accuracies are very high for all classes. Notwithstanding that the image shows very well the structure of the Brussels’s urban environment, problems like the spectral confusion between grey surfaces and bare soil, and between shadow, water and dark grey surfaces can be observed. Besides this, the shadow class covers an important part of the classified image. 
Also for the shadow reclassification an ANN was used. The network was able to assign 56% of the shadow pixels to the correct underlying land cover class. To correct for wrong class assignments in the classification and the shadow reclassification process, 14 post classification rules were applied using the Spatial Modeller of Erdas Imagine. In this process the distinctions within red surfaces and grey surfaces were no longer necessary and the confusion matrix for the post classification result contains only 7 classes (table 2). Post classification increases the kappa index to a value of almost 0.95. The result is a more homogeneous classification (figure 1) that is suited for obtaining reference proportions for training and validation of the sub-pixel estimation model.
	
	
	validation data
	sum
	user’s accuracy

	
	
	2
	3
	4
	5
	6
	7
	8
	
	

	classification
	2
	87
	 
	 
	 
	 
	 
	 
	87
	100%

	
	3
	1
	146
	 
	1
	 
	 
	1
	149
	97,99%

	
	4
	 
	1
	59
	 
	 
	 
	5
	65
	90,77%

	
	5
	 
	 
	1
	278
	51
	7
	 
	337
	82,49%

	
	6
	 
	 
	 
	 
	172
	 
	 
	172
	100%

	
	7
	 
	 
	 
	6
	2
	346
	 
	354
	97,74%

	
	8
	 
	2
	 
	 
	 
	1
	797
	800
	99,62%

	sum
	88
	154
	60
	285
	225
	354
	803
	
	

	producer’s accuracy
	98,86%
	97,99%
	98,33%
	97,54%
	76,44%
	97,74%
	99,25%
	
	kappa = 0,947


Table 2: Confusion matrix for the Ikonos classification (2= red surfaces, 8= grey surfaces, rest see table 1)
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Figure 1: Part of the Ikonos classification for a medium density residential area
4.2 Sub-pixel classification of the Landsat ETM+ image

To infer class proportions within each Landsat pixel from its spectral values, different ANNs for sub-pixel estimation were trained. The best network used spectral bands 2 and 6 and the ratios between spectral bands 1 and 5, 2 and 5, 2 and 6, 3 and 4, and 5 and 6 as input. The per-class MAEs are given in table 3. The table shows that on average the estimated proportion of sealed surfaces within a Landsat pixel differs only 9% from the real sealed surface proportion.
	total
	sealed
	vegetation
	bare soil
	water

	0,245
	0,091
	0,093
	0,057
	0,005


Table 3: Validation of the sub-pixel estimation using per class MAE
A map of sealed surface proportion estimates per Landsat pixel is shown in figure 2 (left). Urban features and the urban structure are clearly visible and the Sonian forest is well distinguished from the city centre. The sub-pixel estimation result can be compared with a reference map obtained by aggregation of the Ikonos classification to a resolution of 30 meters (figure 2, right). Although the reference image is more detailed, both images show a similar spatial pattern. The sub-pixel estimation model shows a tendency to slightly underestimate sealed surface proportions in dense urban areas.


[image: image5]
Figure 2: Sealed surface proportions obtained by sub-pixel estimation (left) compared to an aggregation of the Ikonos classification to 30 meter resolution (right)
5 Conclusion

In this study we used an Ikonos classification, improved by post classification, as a reference for defining a sub-pixel model for estimating proportions of sealed surfaces for Brussels and surroundings. For the per-pixel classification of the reference image we used an ANN. The obtained kappa-index of 0.91 was improved to 0.95 through shadow removal and application of 14 post classification rules. The neural network used for sub-pixel estimation was capable of mapping the spectral values and their ratios onto the sealed surface proportions with an average proportional error of 0.09. This implies that the average difference between estimated and reference sealed surface proportions is only 9%. The urban structure of Brussels is clearly observed. The proportion image shows a good correspondence with the reference data, obtained by aggregating the Ikonos classification to 30m resolution.
Further research is conducted on improving the high resolution reference classification. Possibilities of applying an object oriented classification strategy are investigated. A comparison of different sub-pixel estimation models based on performance and extrapolation potential is also foreseen.
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